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Abstract—Quantum error-correcting codes can be used to
protect qubits involved in quantum computation. This requires
that logical operators acting on protected qubits be translated to
physical operators (circuits) acting on physical quantum states.
We propose a mathematical framework for synthesizing physical
circuits that implement logical Clifford operators for stabilizer
codes. Circuit synthesis is enabled by representing the desired
physical Clifford operator in C

N×N as a 2m× 2m binary sym-
plectic matrix, where N = 2m. We show that for an [[m,m− k]]
stabilizer code every logical Clifford operator has 2k(k+1)/2

symplectic solutions, and we enumerate them efficiently using
symplectic transvections. The desired circuits are then obtained
by writing each of the solutions as a product of elementary
symplectic matrices. For a given operator, our assembly of all
of its physical realizations enables optimization over them with
respect to a suitable metric. Our method of circuit synthesis
can be applied to any stabilizer code, and this paper provides a
proof of concept synthesis of universal Clifford gates for the well-
known [[6, 4, 2]] code. Programs implementing our algorithms can
be found at https://github.com/nrenga/symplectic-arxiv18a.

Index Terms—Heisenberg-Weyl group, symplectic geometry,
Clifford group, stabilizer codes, logical operators, automorphisms

I. INTRODUCTION

The first quantum error-correcting code (QECC) was dis-

covered by Shor [1], and CSS codes were introduced by

Calderbank and Shor [2], and Steane [3]. The general class

of stabilizer codes was introduced by Calderbank, Rains, Shor

and Sloane [4], and by Gottesman [5]. A QECC protects

m−k logical qubits by embedding them into a physical system

comprising m physical qubits. QECCs can be used for the

realization of fault-tolerant quantum computation [6]. For this

purpose, any desired operation on the m−k logical (protected)

qubits must be implemented as a physical operation on the m
physical qubits, while preserving the code space.

For stabilizer codes, physical realizations of Clifford opera-

tors on logical qubits can be represented by 2m× 2m binary

symplectic matrices, reducing the complexity dramatically

from 2m complex variables to 2m binary variables (see [7], [8]

and Section II). We exploit this fact to propose an algorithm

that efficiently assembles all symplectic matrices representing

physical transformations (circuits) that realize a given logical

operator on the protected qubits. This makes it possible to

optimize the choice of circuit with respect to a suitable metric,

that might be a function of the quantum hardware. During the

process of computation on the logical qubits, such efficient

assembly of choices for an operation could be useful since

each of them might interact differently with the current state

and control parameters of the system. This paper provides a

proof of concept demonstration using the well-known [[6, 4, 2]]
QECC [9], [10], where our metric is to reduce the circuit depth

for each operator (see [11] for a detailed discussion).

II. PHYSICAL AND LOGICAL OPERATORS

This section summarizes the mathematical framework for

quantum error correction introduced in [2], [4], [5] and des-

cribed in detail in [9]. The quantum states of a single qubit

system are expressed as |ψ〉 = α |0〉 + β |1〉 ∈ C
2, where

|0〉 ,
[

1
0

]

and |1〉 ,
[

0
1

]

are called the computational basis

states, and α, β ∈ C satisfy |α|2 + |β|2 = 1 as per the Born

rule [12, Chap. 3]. Any single qubit error can be expanded

in terms of flip, phase and flip-phase errors (on a state |ψ〉)
described by the Pauli matrices

X ,

[

0 1
1 0

]

, Z ,

[

1 0
0 −1

]

and Y , ιXZ =

[

0 −ι
ι 0

]

respectively [6, Chap. 10], where ι ,
√
−1. The states of an

m-qubit system are described by (linear combinations of) Kro-

necker products of single-qubit states, and the corresponding

(Pauli) errors are expressed as Kronecker products

± E1 ⊗ E2 ⊗ · · · ⊗ Em, ±ι E1 ⊗ E2 ⊗ · · · ⊗ Em,

where Ei ∈ {I2, X, Z, Y } is the error on the i-th qubit and

I2 is the 2 × 2 identity matrix. These matrices form the

Heisenberg-Weyl group HWN of order 4N2 (also called the

Pauli group), where N = 2m. Note that the elements of HWN

are interpreted as both m-qubit operators and errors.

Given row vectors a, b ∈ F
m
2 we define the m-qubit operator

D(a, b) , Xa1Zb1 ⊗ · · · ⊗XamZbm , (1)

so that the group HWN consists of operators ±D(a, b) and

±ιD(a, b). Multiplication in HWN satisfies

D(a, b)D(a′, b′) = (−1)a
′bT+b′aT

D(a′, b′)D(a, b). (2)

The standard symplectic inner product in F
2m
2 is defined as

〈[a, b], [a′, b′]〉s , a′bT + b′aT = [a, b] Ω [a′, b′]T , (3)
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where the symplectic form in F
2m
2 is Ω =

[

0 Im
Im 0

]

(see [4], [11]). Therefore, two operators D(a, b) and D(a′, b′)
commute if and only if 〈[a, b], [a′, b′]〉s = 0. The isomorphism

γ : HWN/〈±ιIN 〉 → F
2m
2 allows us to represent (up to

multiplication by scalars) elements of HWN as binary vectors

(i.e., γ(D(a, b)) , [a, b]).
The Clifford group CliffN consists of all unitary matrices

g ∈ C
N×N for which gD(a, b)g† ∈ HWN , where g† is the

Hermitian transpose of g [8]. It is the normalizer of HWN in

the unitary group. We regard operators in CliffN as physical

operators acting on quantum states in C
N , to be implemented

by quantum circuits. By definition, an operator g ∈ CliffN

induces an automorphism of HWN by conjugation. Note

that the inner automorphisms induced by matrices in HWN

preserve every conjugacy class ±D(a, b), because (2) implies

that elements in HWN either commute or anti-commute. For

E(a, b) , ιab
T

D(a, b), automorphism induced by g satisfies

gE(a, b)g† = ±E ([a, b]Fg) , where Fg =

[

Ag Bg

Cg Dg

]

(4)

is a symplectic matrix. So it preserves symplectic inner

products, i.e., 〈[a, b]Fg, [a
′, b′]Fg〉s = 〈[a, b], [a′, b′]〉s (see [8],

[13]). This means that FgΩF
T
g = Ω or equivalently

AgB
T
g = BgA

T
g , CgD

T
g = DgC

T
g , AgD

T
g +BgC

T
g = Im.

(5)

The fact that Fg is symplectic expresses the property that the

automorphism induced by g must respect commutativity in

HWN . Let Sp(2m,F2) denote the group of symplectic 2m×
2m matrices over F2. Then the map φ : CliffN → Sp(2m,F2)
defined by φ(g) , Fg is a homomorphism with kernel HWN ,

and every Clifford operator maps down to a matrix Fg . Hence

HWN is a normal subgroup of CliffN and CliffN/HWN
∼=

Sp(2m,F2).
A stabilizer is a subgroup S of HWN generated by com-

muting Hermitian matrices [5], [6]. For a, b ∈ F
m
2 , note

that ±E(a, b) = ±ιabTD(a, b) is Hermitian, E(a, b)2 = IN ,

and the operators
IN±E(a,b)

2 project onto the ±1 eigenspaces

of E(a, b), respectively. A stabilizer S has the additional

property that if it contains an operator g, then it does not

contain −g. Consider a stabilizer S generated by Hermitian

matrices E(ai, bi), where [ai, bi], i = 1, 2, . . . , k are linearly

independent vectors in F
2m
2 . The stabilizer code corresponding

to S is the subspace V (S) fixed pointwise by S, i.e.,

V (S) = {|ψ〉 ∈ C
N : g |ψ〉 = |ψ〉 ∀ g ∈ S}. (6)

Observe that the operator
IN+E(a1,b1)

2 × · · · × IN+E(ak,bk)
2

projects onto V (S), and that dim V (S) = 2m−k , M .

Such a code encodes m − k logical qubits into m physical

qubits. Hence an [[m,m − k]] QECC is an embedding of

a 2m−k-dimensional Hilbert space into a 2m-dimensional

Hilbert space. Note that all quantum codes are not necessa-

rily stabilizer codes (see [4]). Logical qubits are commonly

referred to as protected qubits or encoded qubits.

TABLE I
A UNIVERSAL SET OF LOGICAL OPERATORS AND CORRESPONDING

PHYSICAL OPERATORS. The number of 1s in Q and R directly relates to
number of gates. The N coordinates are indexed by binary vectors v ∈ Fm

2 ,

and ev denotes the standard basis vector in CN with an entry 1 in position
v and all other entries 0. Here H2k denotes the Walsh-Hadamard matrix of

size 2k , Uk = diag (Ik, Om−k) and Lm−k = diag (Ok, Im−k).

Logical Operator Fg Physical Operator ḡ

Ω =

[

0 Im
Im 0

]

HN = H⊗m
2

AQ =

[

Q 0
0 Q−T

]

aQ : ev 7→ evQ

TR=

[

Im R
0 Im

]

(R symmetric)

tR = diag

(

ιvRv
T

)

Gk =

[

Lm−k Uk

Uk Lm−k

]

gk = H2k ⊗ I2m−k

Unitary operators gL ∈ UM , where M = 2m−k, acting on

the logical qubits are called logical operators. QECCs encode

a logical state in C
M into a physical state in C

N . The process

of synthesizing a logical operator gL for a QECC refers to

finding a physical operator ḡ ∈ UN that preserves the code

space (i.e., normalizes S) and realizes the action of gL on

the protected qubits. Two well-known methods to synthesize

logical Pauli operators were described in [5] and [14]. For

stabilizer codes, these imply that for all hL ∈ HWM the

associated physical operator h̄ ∈ HWN as well. Hence for all

gL ∈ CliffM we also have ḡ ∈ CliffN . The physical operators

h̄ have a representation in F
2m
2 via the map γ. Using the

map φ, we regard a logical Clifford operator gL ∈ CliffM
as a symplectic matrix Fg ∈ Sp(2(m− k),F2). For stabilizer

codes, in order to translate gL into a physical operator ḡ, there

are multiple ways to embed Fg into Fḡ ∈ Sp(2m,F2) such

that the corresponding ḡ operates on states in C
N and acts

as desired on the states of the QECC. For each gL ∈ CliffM
our algorithm allows one to identify all such embeddings. The

idea is as follows.

We observe that the logical Clifford operators gL ∈ CliffM
are uniquely defined by their conjugation relations with the

logical Paulis hL (also see [6], [8], [9]). Therefore these

relations can be directly translated to their physical equivalents

ḡ and h̄, i.e., gLhL(gL)† = (h′)L ∈ HWM ⇒ ḡh̄ḡ† = h̄′ ∈
HWN as well. Using the relation in (4), these conditions are

translated into linear constraints on Fḡ . Then, linear constraints

that require Fḡ to normalize S are added. The set of all

Fḡ ∈ Sp(2m,F2) that satisfy these constraints identify all

embeddings of Fg into Sp(2m,F2). After we obtain Fḡ , we

synthesize a corresponding physical operator ḡ by factoring

Fḡ into elementary symplectic matrices from Table I. Note

that there are multiple circuits ḡ for a given Fḡ . In the next

section, we carry out the process of finding universal Clifford

gates for the well-known [[6, 4, 2]] CSS code [9], [10], and then

discuss the general case.
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III. LOGICAL OPERATOR SYNTHESIS: THE [[6, 4, 2]] CODE

The [6, 5, 2] single-parity check code C is generated by

GC =

[

HC

GC/C⊥

]

; GC/C⊥ ,









1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0









, (7)

where the parity-check matrix is HC = [1 1 1 1 1 1].
The rows hi, for i = 1, 2, 3, 4, of GC/C⊥ generate all coset

representatives for C⊥ in C. The CSS construction [2], [3], [6]

provides a [[6, 4, 2]] stabilizer code Q spanned by the states

1√
2

∣

∣

∣

∣

∣

(000000) +
4

∑

i=1

xihi

〉

+
1√
2

∣

∣

∣

∣

∣

(111111) +
4

∑

i=1

xihi

〉

,

(8)

where xi ∈ F2, i = 1, 2, 3, 4. Let Xt and Zt denote the X
and Z operators, respectively, acting on the t-th physical qubit.

Then the physical operators

g
X = X1X2X3X4X5X6, g

Z = Z1Z2Z3Z4Z5Z6 (9)

generate the stabilizer group S that determines Q.

A. Logical Operators for Protected Qubits

We construct logical Clifford operators by synthesizing

physical operators ḡ on the physical qubits. Since the operator

ḡ preserves Q, conjugation by ḡ must preserve the stabilizer

S and its normalizer S⊥ in HWN , i.e., the dual of S with

respect to the symplectic inner product [4]. We note that ḡ
need not commute with every element of the stabilizer S.

1) Logical Paulis: Let |x〉L be the logical state defined

by x = [x1, x2, x3, x4] ∈ F
4
2 in (8). Then the generating

set {XL
i , Z

L
i ∈ HW24 , i = 1, 2, 3, 4} for the logical Pauli

operators are defined by the actions

XL
i |x〉L = |x′〉L , where x′j =

{

xi ⊕ 1, if j = i

xj , if j 6= i

and ZL
i |x〉L = (−1)xi |x〉L . (10)

We denote the physical operators corresponding to XL
i and

ZL
i as X̄i and Z̄i, respectively. Set GX

C/C⊥ , GC/C⊥ and set

GZ
C/C⊥ ,









0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1









. (11)

We use the rows of these two matrices to define logical Pauli

operators X̄i, Z̄i, i = 1, 2, 3, 4 as follows (see [11, Section V]).

X̄1 = X1X2 Z̄1 = Z2Z6

X̄2 = X1X3 Z̄2 = Z3Z6

X̄3 = X1X4 Z̄3 = Z4Z6

X̄4 = X1X5 Z̄4 = Z5Z6

. (12)

These operators commute with every element of the stabilizer

S and satisfy, as required,

X̄iZ̄j =

{

−Z̄jX̄i if i = j,

Z̄jX̄i if i 6= j
. (13)

In general, to define valid logical Pauli operators, it can

be observed that the matrices GX
C/C⊥ , G

Z
C/C⊥ must satisfy

GX
C/C⊥

(

GZ
C/C⊥

)T

= Im−k and GZ
C =

[

HC

GZ
C/C⊥

]

must form

another generator matrix for the (classical) code C. It can be

verified that the above matrices satisfy these conditions.
2) Logical Phase Gate: The phase gate ḡ = P̄1 on the first

logical qubit (i.e., the physical implementation) is defined by

P̄1X̄jP̄
†
1 =

{

Ȳj if j = 1,

X̄j if j 6= 1,
, P̄1Z̄jP̄

†
1 = Z̄j ∀ j = 1, 2, 3, 4.

(14)

One can express P̄1 in terms of the physical Paulis Xt, Zt

as follows. The condition P̄1X̄1P̄
†
1 = Ȳ1 implies P̄1 must

transform X̄1 = X1X2 into Ȳ1 , ιX̄1Z̄1 = ιX1X2Z2Z6 =
X1(ιX2Z2)Z6 = X1Y2Z6. Similarly, the other conditions

imply that all other X̄js and all Z̄js must remain unchanged.

Direct inspection of these conditions yields the circuit given

below. First we find an operator which transforms X2 to Y2
and leaves other Paulis unchanged; this is P2, the phase gate

on the second physical qubit. Then we find an operator that

transforms Y2 into Y2Z6, which is CZ26 as X2CZ26X
†
2 =

X2Z6 and ZiCZ26Z
†
i = Zi, i = 1, 2, . . . , 6. Here CZ26 is the

controlled-Z gate on physical qubits 2 and 6. But this also

transforms X6 into Z2X6 and hence the circuit CZ26P2 does

not fix the stabilizer gX . Hence we include P6 so that the full

circuit P6CZ26P2 fixes g
X , gZ and also realizes P̄1.

P

P6

2
≡ P|x1〉L

We now describe how this same circuit can be synthesized

via symplectic geometry. Let F =

[

A B
C D

]

be the symplectic

matrix corresponding to P̄1. The conditions imposed in (14)

on logical qubit operators X̄j , j = 1, 2, 3, 4 give, as per (4),

[110000, 000000]F = [110000, 010001] (X1X2 7→ X1Y2Z6)

⇒ (e1 + e2)A = e1 + e2, (e1 + e2)B = e2 + e6,

and (e1 + ei)A = e1 + ei, (e1 + ei)B = 0, i = 3, 4, 5.

Similarly, the conditions imposed on Z̄j , j = 1, 2, 3, 4 give

(ei + e6)C = 0, (ei + e6)D = ei + e6, i = 2, 3, 4, 5.

Although it is sufficient for P̄1 to just normalize S, we can

always require that the physical operator commute with every

element of S, i.e., centralize S (see [11, Theorem 28]).

(e1 + . . .+ e6)A = e1 + . . .+ e6 = (e1 + . . .+ e6)D,

(e1 + . . .+ e6)B = 0 = (e1 + . . .+ e6)C.

We observe that one solution is F = TB (see Table I), where

B , BP =

















0 0 0 0 0 0
0 1 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 1

















⇒ F =

[

I6 B
0 I6

]

.
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The resulting physical operator P̄1 = diag
(

ιvBP vT
)

satisfies

P̄1 = P6CZ26P2 and hence coincides with the above circuit.

Henceforth, we refer to ḡ itself as the logical operator.

3) Logical Controlled-Z (CZ): The logical operator CZ12

is defined by its action on the logical Paulis as

CZ12X̄jCZ
†

12 =











X̄1Z̄2 if j = 1,

Z̄1X̄2 if j = 2,

X̄j if j 6= 1, 2

,

CZ12Z̄jCZ
†

12 = Z̄j ∀ j = 1, 2, 3, 4. (15)

We first express the logical operator CZ12, on the first two

logical qubits, in terms of the physical Pauli operators Xt, Zt.

X̄1 = X1X2
CZ127−→ X1X2Z3Z6 Z̄1 = Z2Z6

CZ127−→ Z2Z6

X̄2 = X1X3
CZ127−→ X1X3Z2Z6 Z̄2 = Z3Z6

CZ127−→ Z3Z6

.

X̄3, X̄4, Z̄3, Z̄4 are left unchanged by CZ12. As with the

phase gate, we translate these conditions into linear equations

involving the constituents of the corresponding symplectic

transformation F . We again obtain F = TB , where

B , BCZ =

















0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 1 1 0 0 0

















.

The physical operator CZ12 = diag
(

ιvBCZv
T
)

commutes

with the stabilizer gZ but not with g
X ; it takes X⊗6 to −X⊗6.

This is remedied through post multiplication by Z6, resulting

in the circuit obtained by Chao and Reichardt [10]:

Z6

3

2

≡
|x2〉L

|x1〉L

4) Logical Controlled-NOT (CNOT): The logical operator

CNOT2→1, where logical qubit 2 controls 1, is defined by

CNOT2→1X̄jCNOT
†

2→1 =

{

X̄1X̄2 if j = 2,

X̄j if j 6= 2
,

CNOT2→1Z̄jCNOT
†

2→1 =

{

Z̄1Z̄2 if j = 1,

Z̄j if j 6= 1.
(16)

We approach synthesis via symplectic geometry, and express

the operator CNOT2→1 in terms of the physical operators

Xt, Zt as shown below.

X̄1 = X1X2
2→17−→ X1X2 Z̄1 = Z2Z6

2→17−→ Z2Z3

X̄2 = X1X3
2→17−→ X2X3 Z̄2 = Z3Z6

2→17−→ Z3Z6

.

X̄3, X̄4, Z̄3, Z̄4 are again left unchanged by CNOT2→1. As

before, we translate these conditions into linear equations

involving the constituents of the corresponding symplectic

transformation F . We identify the solution F =

[

A 0
0 A−T

]

,

where

A =

















1 0 0 0 0 0
0 1 0 0 0 0
1 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
1 1 0 0 0 1

















, A−T =

















1 0 1 0 0 1
0 1 1 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















.

The action of CNOT2→1 on logical qubits is related to the

action on physical qubits through the generator matrix GC/C⊥ .

The map v 7→ vA fixes the code C (i.e., ev = |v〉 7→
evA = |vA〉 fixes Q and hence its stabilizers g

X and g
Z)

and induces a linear transformation on the coset space C/C⊥

(which defines the CSS state). The action K on logical qubits

(bits) is related to the action A on physical qubits (bits) by

K ·GX
C/C⊥ = GX

C/C⊥ ·A and we obtain

K =









1 0 0 0
1 1 0 0
0 0 1 0
0 0 0 1









as desired. The circuit shown on the left below implements the

operator ev 7→ evA on physical qubits, where ev is a standard

basis vector in C
N as defined in Table I. The circuit on the

right implements ex 7→ exK , where x ∈ F
4
2, i.e. CNOT2→1.

1

2

3

6

≡
|x1〉L

|x2〉L

We note that [15] discusses codes and operators where A is a

permutation matrix corresponding to an automorphism of C.

Remark: To implement CNOT2→1 we can also use the identity

1

2
=

H̄1 H̄11

2

where H̄1 is the targeted Hadamard operator (synthesized

below). However, this construction might require more gates.

5) Logical Targeted Hadamard: The Hadamard gate H̄1 on

the first logical qubit is defined by the actions

H̄1X̄jH̄
†
1 =

{

Z̄j if j = 1,

X̄j if j 6= 1,
, H̄1Z̄jH̄

†
1 =

{

X̄j if j = 1,

Z̄j if j 6= 1,
.

(17)

As before, we translate these conditions into linear equations

involving the constituents of the corresponding symplectic

transformation F . We identify one possible solution as

A =

















1 0 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
1 1 0 0 0 1

















, B =

















0 0 0 0 0 0
0 1 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 1

















,
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C =

















1 1 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















, D =

















1 1 0 0 0 1
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















.

(18)

The unitary operation corresponding to this solution commutes

with each stabilizer element. Another solution for H̄1 which

fixes Z⊗6 but takes X⊗6 ↔ (111111, 000000) to Y ⊗6 ↔
(111111, 111111) is given by just changing B above to

B =

















0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
1 0 1 1 1 1

















. (19)

However, for both these solutions the resulting symplectic

transformation does not correspond to any of the elementary

forms in Table I. Hence the unitary needs to be determined

by expressing F as a sequence of elementary transformations

and then multiplying the corresponding unitaries. An algorithm

for this is given in [13] (see [11, Theorem 23]). For the

solution (18), we verified our matrix with the circuit in [10]:

H

H

H X

Z

1

2

6

B. Proposed Algorithm and Discussion

The synthesis of logical Paulis by Gottesman [5] and by

Wilde [14] exploits symplectic geometry over the binary

field. Building on their work we have demonstrated, using

the [[6, 4, 2]] code as an example, that symplectic geometry

provides a systematic framework for synthesizing physical

implementations of any logical operator in the logical Clifford

group CliffM . The algorithm comprises the following steps:

1) Determine the target logical operator ḡ by specifying its

conjugation relations with the logical Pauli operators [8].

2) Transform the above relations into linear equations on

the target symplectic transformation F . Add conditions

for normalizing the stabilizer S.

3) Derive a feasible solution for F (satisfies FΩFT = Ω).

4) Factor F into a product of elementary symplectic trans-

formations listed in Table I, possibly using the algorithm

given in [13] (see [11, Algorithm 3]), and compute ḡ.

5) Check for conjugation of ḡ with the stabilizer genera-

tors and for the conditions derived in step 1. If some

signs are incorrect, post-multiply by an element from

HWN as necessary to satisfy these conditions (use [6,

Proposition 10.4]). Note that every Pauli operator in

HWN induces the symplectic transformation I2m, so

post-multiplication does not change the target matrix.

6) Express the operator ḡ as a sequence of physical Clifford

gates to obtain the desired circuit for ḡ.

In step 3 one can obtain all valid solutions F as follows:

Combine all linear conditions on F obtained in step 2 to

obtain a system of equations UF = V . Then vectorize both

sides to get (I2m ⊗ U) vec(F ) = vec(V ). Perform Gaussian

elimination on the augmented matrix [(I2m ⊗ U) , vec(V )].
If ℓ is the number of non-pivot variables in the row-reduced

echelon form, then there are 2ℓ solutions to the linear system.

All such solutions that satisfy FΩFT = Ω are feasible

symplectic solutions for ḡ. In [11] we give a more elegant and

efficient algorithm for this task using symplectic transvections.

We explicitly show that for an [[m,m−k]] stabilizer code every

logical Clifford operator has 2k(k+1)/2 symplectic solutions.

IV. CONCLUSION

In this work we have used symplectic geometry to pro-

pose a systematic framework for synthesizing logical Clifford

operators for any stabilizer code. Our algorithm provides as a

solution all feasible symplectic matrices, which are then trans-

formed into circuits by decomposing them into elementary

forms. This decomposition is not unique, and in future work

we will optimize for circuit complexity and fault-tolerance.
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